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Although dynamics of crystallization under isothermal conditions in glassy 

materials is fairly well described by the Kolmogorov-Johnson-Mehl-Avrami (KJMA) 

formalism, there are still unsolved problems with the KJMA equation. By introducing a 

fractal structural concepts and the Meyer-Neldel rule on thermally activated processes, 

an extended KJMA model is proposed that allows one to get a better insight into the 

phase changes in glasses. The phase changes of Ge2Sb2Te5 (GST) system in steady and 

nanosecond-scale pulse-heating conditions are also discussed.   

 

1. Introduction 

Phase transitions are one of the most important topics in material science, since they 

are usually encountered in the production cycle of materials. During the last decade, 

there has been great interest in amorphous chalcogenides such as Ge2Sb2Te5 (GST) for 

applications in optical data storage [1]. Random nucleation and isotropic growth in an 

infinite specimen is well described by the Kolmogorov [2], Johnson and Mehl [3], and 

Avrami [4] models (KJMA model). The KJMA model gives the macroscopic evolution 

of the transformed phase under isothermal conditions [5-7].  

Dynamics of crystallization in GST materials has been fairly well interpreted in 

terms of the KJMA model [8,9]. At the same time, while its applicability is criticized by 

Senkader and Write [10]. The KJMA formalism may have some difficulties, which have 

not been well understood so far; e.g. the Avrami exponent and the reaction rate [10]. On 

the other hand, crystallization kinetics under pulse-heating conditions has been 

discussed in GST [11,12]. It is also unclear whether or not the KJMA model can be 

applied to the phase transitions under pulse-heating conditions.  

In the present study, we concentrate a macroscopic property which is based on the 

KJMA model. The unclear growth kinetics (the Avrami exponent and reaction rate) of 

phase changes will be discussed by introducing a fractal structural concept [13] and by 

the Meyer-Neldel rule [14] for the growth rate. A modified, or extended KJMA equation 

proposed here may be useful to get proper understandings of phase changes in GST and 

other glassy systems, without losing simplicity of the KJMA formalism. It should be 

also noted that microscopic view is still a matter of debate [1,15-17], which will be not 

discussed in the present paper.  



2. KJMA formalism 

We briefly discuss the KJMA theory. This theory 

requires that the nucleation sites should be randomly 

distributed over the volume V. In Fig.1, three particles have 

grown together and growth ceases where the particles 

impinge, as indicated by the heavy lines [6]. The 

particle-overlap in the absence of impingement is shown as 

well (extended volume Vex).                              Fig.1 Particle growth 

The actual (transformed) volume Vtr is given as 
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Note that the extended volume Vex is a virtual volume. Equation (1) is written as 

  ex1 expf f   ,                                 (2) 

where f = Vtr/V , fex = Vex/V. Here, f is the transformed volume fraction. In the case of 

instantaneous nucleation of spherical grains with number density N, the volume growth 

rate with radius r for an interface-controlled reaction can be expressed as  
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Here the effective growth rate is given by G = dr/dt and then fex at time t is expressed by 
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We then get well known KJMA equation 

n1 exp ( )f kt     ,                                (5) 

with n = 3. Here, n is called the Avrami exponent (coefficient), and k is an effective rate 

constant (growth rate). The Avrami exponent should be an integer providing information 

on the dimensionality of the crystallization process. Actually, however, the values of n 

in the range from 1 to 5.8 in GST [10]. The effective rate constant k is 

temperature-dependent and is given by  
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where  is the frequency factor and EA the activation energy. Note that  takes 

unreasonably large values (1017-1024 s-1) [10]. These will be discussed in the following 

section together with non-integer Avrami coefficient.  



3. Extended KJMA model 

The KJMA formalism is a very simple and is useful to understand the time evolution 

of crystallization of glasses. However, at least, two problems on the KJMA should be 

overcome without losing its simplicity. The first problem is the Avrami exponent n. The 

theory predicts that n represents the Euclid dimensions (n = 1, 2, 3). However, the 

values of n are reported to be non-integer and sometimes n is bigger than 3 as already 

stated. Non-integer values of n can be attributed to violation of the fundamental 

assumptions (strict conditions) of KJMA formula which requires (i) a random 

distribution of potential site of nucleation, (ii) instantaneous nucleation, (iii) 

interface-controlled grain growth, and time (or grain size ) independent growth rate k 

[10,12].   

Here, we introduce a fractal concept on space dimension, which may be useful for 

discussing the phase changes, since the surfaces of most materials are expected to be 

fractals [13,18]. The volume growth rate, eq.(3), can then be modified as 
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where C is a constant and D the fractal dimension of the surface of grains. Finally, we 

get f as 

 D+11 exp ( )f kt     .                                (8) 

It is therefore suggested that various values of the Avrami exponent n observed can be 

attributed to complex shape of the crystalline grain surfaces with fractal structure. This 

fractal-surface-controlled (FSC) crystallization may be supported by the following 

reports, e.g., that D-value takes  3.0 for silica gels [19] and 2.6-2.9 for sandstones[20]. 

    Turn to the second problem: We discuss the temperature-dependent rate constant 

k(T) [eq.(6)]. The reported activation energies EA are around 2 eV (1-3 eV) in GST 

alloys [10], which are deduced also from the other thermal analysis such as the 

Differential Scanning Calorimetry (DSC) [21]. The problem is that unreasonably large 

frequency factor  (1017-1024 s-1) is deduced [10,22]. It is known that thermally 

activated phenomena, such as electronic and ionic transports, and structural relaxation 

in disordered matters, obey the Meyer-Neldel compensation rule [14,23]. For example 

k(T) in eq.(6) is modified to 
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where the frequency factor  experimentally deduced is  



 A
0

MN

exp
E

E
 

 
  

 
,                                   (10) 

and EMN is called the Meyer-Neldel energy and 0 is a constant. Equation (9) is called 

the Meyer-Neldel (MN) rule or compensation law [23]. In temperature-activated 

electronic transport in amorphous chalcogenides, the conductivity pre-factor also 

involves the term of exp(EA/EMN) with EMA= 25-60 meV [24].  

Recent reports on structural relaxation and 

phase change in GST also follow the MN rule, 

as shown in Fig. 2 [22]. Open circles show the 

structural relaxation (SR), i.e. the conductivity 

change under thermal annealing, and other 

symbols are for the crystallization in GST. The 

both phenomena fall into similar MN rule. 

EMN and 0 here are estimated to be 66 meV 

and 106-107 s-1, respectively. Thus the 

experimentally deduced unphysical frequency 

factor  can be explained in the frame work of     Fig.2  Correlation between EA and  

The MN rule. The Origin of the MN rule is still            in GST.  

not clear [22], although many-body thermal excitation in activated processes is 

suggested [22,23].  

   

4. Phase changes under pulse-heating (non-isothermal condition) 

The KJMA theory is applied to the phase changes under isothermal conditions. It is 

of interest to examine whether or not the KJMA formalism applies to the phase changes 

under pulse heating (non-isothermal conditions). Weidenhof et al. [12] have reported the 

phase changes, f vs. t, in GST under isothermal and non-isothermal (pulse heating) 

conditions. Results are shown in Fig. 3 (a) and (b). The Avrami exponent n is reported to 

be 2.5 under isothermal condition. n under the pulse-heating condition (several 

hundreds nanoseconds) has two components, 2.2 for short time and 1.3 for longer time 

ranges. The buckling of the KJMA plot after approximately 220 ns is suggested to be 

due to saturation of the growth in vertical direction [12]. These results suggest that the 

isothermal conditions may be hold if the phase changes proceed during pulse heating. 

Finally, it should be noted that the phase change processes in nano- and pico-seconds 

time scales have been reported [25,26]. It is not clear whether or not the KJMA works 

for such short time scale. 



 

               (a)                                      (b)  

Fig. 3 The KJMA plots in GST. (a) under isothermal condition, (b) pulse-heating 

condition [12].. 

 

5. Summary 

An extended KJMA theory has been proposed. The classical KJMA theory with 

some modifications (extended KJMA theory) can be applied to explain the dynamics of 

crystallization in GST. Some difficulties underlying the KJMA formalism were 

overcome by introducing fractal structural concept on crystal growth. Unphysical 

frequency factor in the KJMA can also be explained in the frame work of the 

Meyer-Neldel rule. It is still not clear whether or not the extended KJMA applies to the 

phase change processes in nano- and pico- seconds regions. 
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