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ABSTRACT 

A new material SnTe for a superlattice (SL) phase-change device is proposed as the substitute of GeTe. XRD results 

showed that a SnTe(111)/Sb2Te3(001) SL formed, though SnSbTe-alloy peaks were greatly dominant. The switching 

power of this device was approximately 1/10th－1/15th that of a Ge2Sb2Te5 device, and, almost equivalent to or lower 

than that of a GeTe/Sb2Te3 SL device. The endurance was confirmed to be higher than 10
5
 cycles. For the mechanism 

of the low switching power, Sn switching might work. This is, however, still a supposition. 

Key words: phase-change memory, superlattice, interfacial phase-change memory (iPCM), SnTe/Sb2Te3 

 

1. INTRODUCTION 

A phase-change random access memory is expected to be next generation non-volatile solid-state memory
1
. The most 

urgent issue of phase-change memory for commercialization is the reduction of switching power for resistance 

switching. Recently, “interfacial phase-change memory” (iPCM) composed of a GeTe(111)/Sb2Te3(001) superlattice 

(SL) has been proposed, and verified to suppress the switching power drastically
2
. In such a SL, Ge atoms reversibly 

switch between octahedral and tetrahedral sites in GeTe-lattice depending on applied voltage and/or current. This 

mechanism has been confirmed with both the theoretical first principle calculation
3
 and experiment

2
. This type of 

iPCM is a strong candidate as the recording material for the future phase-change memory. 

This article proposes a new SL material SnTe/Sb2Te3 for low-power switching of a phase-change memory. The 

experimental results on this SL are reported and discussed. A further direction of this study is also included. 

 

2. EXPERIMENT 
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Figure 1  Schematic illustration of

SnTe/Sb2Te3 SL structure. 
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Figure 2 Schematic illustration of

SnTe/Sb2Te3 SL device. 
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Two kinds of substrates were used: glass for XRD experiment and particular substrate described in Ref. 4 for 

fabrication of the SnTe/Sb2Te3 SL device. The film structure on these substrates was as follows: Sb2Te3(10 nm) / 

[SnTe (1 nm) / Sb2Te3 (4 nm)]9 /W90Ti10 (50 nm), which is shown in Figs. 1 and 2. All the films were deposited by 

using a magnetron sputtering apparatus. The substrate temperatures were room temperature for W90Ti10 film as a top 

electrode, and 200℃ for each chalcogenide film. Using photolithography, the SL device shown in Fig. 2 was 

fabricated. 

XRD experiments were carried out to identify the phases of sputter-deposited films and to investigate their crystalline 

orientations. A prober apparatus was used to investigate the electrical properties of the SL device.    

 

3. RESULTS 

 

 

 

 

 

 

 

 

 

Figure 3 shows the XRD profile for the SnTe/Sb2Te3 SL film. Small SnTe(111) and (222), and Sb2Te3(00l) (l : 3, 6, 

and 15) peaks were observed with strong SnSbTe-alloy’s peaks. These results showed that a SnTe(111)/Sb2Te3(001) 

SL phase formed and that SnSbTe-alloy phase dominantly formed.  
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Figure 3 XRD profile of SnTe/Sb2Te3 SL film.
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Figure 4 Dependence of the read resistance

on the pulse voltage for the SnTe/Sb2Te3 SL device.

VReset Plug size : 180 nm
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Figure 5 Dependence of the read resistance

on the dynamic current.
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Figure 4 shows the dependence of the read resistance on the pulse voltage for the SnTe/Sb2Te3 SL device. The set 

(reset) voltage was less than 0.1 V (about 1.7 V). Figure 5 shows the dependence of the read resistance on the 

dynamic current. In Fig. 5, the two-step changes in resistance were observed. In this stage, we cannot determine which 

is true as the reset current. When we define two reset currents IReset, 1 and IReset, 2, the IResst, 1 (IReset2) was about 1.4 mA 

(2.1 mA). Multiplying the above reset voltage by this IReset, 1 (IReset, 2), the switching power: the consumed power 

which was defined with the reset power was about 2.4 mW (3.6 mW). Since the switching power of a Ge2Sb2Te5 

device (a GeTe/Sb2Te3 SL device) was about 36 mW (3.6 mW)
4
 with the same prober, this power is approximately 

1/10th－1/15th that of a Ge2Sb2Te5 device
4
, and almost equal to or lower than that of a GeTe/Sb2Te3 SL device

4
.  

 

 

 

 

 

 

 

 

 

Figure 6 shows the data on endurance of the SnTe/Sb2Te3 SL device. At least 10
5
 cycles were confirmed, though 

resistance fluctuations were observed during the 10
3
 – 10

4
 cycles. 

 

4. DISCUSSIONS 

The mechanism of low switching power (Figs. 4 and 5) in the SnTe/Sb2Te3 SL device is not clear. Considering the 

following three matters: (1) Sn is one row under Ge in the Periodic Table, (2) Both GeTe and SnTe have the same 

NaCl-type crystalline structure, and (3) Ref. 5 mentions that Sn increases the mobility of the atoms in Sn-doped 

Ge2Sb2Te5 film, the same phenomenon as GeTe/Sb2Te3 SL device, i.e., Sn switching (6 fold bond⇔4 fold bond 

switching) might work
2,3

. This is, however, still a supposition.  

The two-step changes in resistance in Fig. 5 and the resistance fluctuations in Fig. 6 might be due to the low-quality 

sputtered films. The SnSbTe-alloy phase dominates the films (Fig. 3). The alloy phase is considered to be formed 

through the following processes: The nucleus formation was produced with large lattice mismatch between the SnTe 

and Sb2Te3 (～5.4 %) and subsequent grain growth was produced with too high substrate temperature (200℃) to 

obtain crystalline SnTe film. (Crystallization temperature of SnTe＜room temperature.) Thus, the amount of the alloy 

phase must be reduced by decreasing the substrate temperature, leading to solve the problems of the two-step changes 

and the resistance fluctuations. 

 

5. CONCLUSION 

We demonstrated that the SnTe/Sb2Te3 SL device shows the low-power resistance switching. The switching power 

was approximately 1/10th－1/15th that of a Ge2Sb2Te5 device, and, almost equivalent to or lower than that of a 
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Figure 6 Endurance of SnTe/Sb2Te3 SL device.
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GeTe/Sb2Te3 SL device. The endurance was confirmed to be higher than 10
5
 cycles. The SnTe/Sb2Te3 SL device 

might be candidate for future phase-change memory. 
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