Control of Photoluminescence Polarization of InAs Nanowire Quantum Dot Using Phase Change Material

Ariyoshi Yamamura1, Kei Yamaguchi1, Nicolas Chauvin2, Michel Gendry3, Masashi Kuwahara4, and Toshiharu Saiki1

1Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan
2Institut des Nanotechnologies de Lyon, INSA-Lyon
3Institut des Nanotechnologies de Lyon, Ecole Centrale de Lyon
4Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology
E-mail: ariyoshi.yamamura@saiki.elec.keio.ac.jp

ABSTRACT

On-demand control of photoemission properties, particularly polarization, of quantum nanostructures is a fundamental requirement for realization of optoelectronic integrated devices. For hybridization of optical and electronic devices, monolithic combination of III-V nanostructures with a high quantum yield and matured silicon integrated circuits is most promising. Photoluminescence (PL) properties from quantum dots (QDs) can be largely modified by embedding the QD in a nanowire, which supports propagation modes of PL in one-dimensional direction. In this study we discuss the possibility of PL polarization control of InAs QD/InP nanowire by modifying the effective diameter of nanowire by using the change in refractive index of GeSbTe (GST).

To design the length and diameter of GST/InP nanowire, a FDTD electromagnetic simulation was performed. We find that a switching between x-polarized and y-polarized PL can be achieved at an optimum condition. An experimental demonstration of PL switching based on single QD spectroscopy will be also presented.

Key words: Quantum dot, nanowire, photoluminescence, polarization